Encyclopedia

  • Unraveling microbial turnover and non-extractable residues of Bromoxynil (cas 1689-84-5) in soil microcosms with 13C-isotope probing☆
  • Add time:09/24/2019         Source:sciencedirect.com

    Bromoxynil (cas 1689-84-5) is a widely used nitrile herbicide applied to maize and other cereals in many countries. To date, still little is known about bromoxynil turnover and the structural identity of bromoxynil non-extractable residues (NER) which are reported to occur in high amounts. Therefore, we investigated the microbial turnover of 13C-labeled bromoxynil for 32 days. A focus was laid on the estimation of biogenic NER based on the turnover of 13C into amino acids (AA). At the end, 25% of 13C6-bromoxynil equivalents were mineralized, 2% assigned to extractable residues and 72.5% to NER. Based on 12% in the 13C-total AA and an assumed share of AA of 50% in microbial biomass we arrived at 24% of total 13C-biogenic NER. About 33% of the total 13C-NER could thus be explained by 13C-biogenic NER; 67% was unknown and by definition xenobiotic NER with potential for toxicity. The 13C label from 13C6-bromoxynil was mainly detected in the humic acids (28.5%), but significant amounts were also found in non-humics (17.6%), fulvic acids (13.2%) and humins (12.7%). The 13C-total amino acids hydrolyzed from humic acids, humins and fulvic acids amounted to 5.2%, 6.1% and 1.2% of 13C6-bromoxynil equivalents, respectively, corresponding to total 13C-biogenic NER amounts of 10.4%, 12.2% and 2.4%. The humins contained mostly 13C-biogenic NER, whereas the humic and fulvic acids may be dominated by the xenobiotic NER. Due to the high proportion of unknown 13C-NER and particularly in the humic and fulvic acids, future studies should focus on the detailed characterization of these fractions.

    We also recommend Trading Suppliers and Manufacturers of Bromoxynil (cas 1689-84-5). Pls Click Website Link as below: cas 1689-84-5 suppliers


    Prev:Waterborne exposure of zebrafish embryos to micromole concentrations of Ioxynil (cas 1689-83-4) and diethylstilbestrol disrupts thyrocyte development
    Next: Oilseed cuphea tolerates Bromoxynil (cas 1689-84-5))

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View