Encyclopedia

  • Molecular interactions in the complexes of toluene with butyronitrile: A DFT approach
  • Add time:09/25/2019         Source:sciencedirect.com

    Density Functional Theory (DFT) has been employed to investigate the self association of butyronitrile and the heterointeractions in the 1:2 (toluene: butyronitrile) and 1:1 complexes of toluene with butyronitrile. For this investigation the B3LYP functional with Grimme's dispersion correction (D3) term and ωB97XD functionals were used. The theoretical frequency analysis shows the unsuitability of B3LYP with D3 for the present investigation. Therefore, Natural Bonding Orbital analysis was done at the functional ωB97XD. It is found through this work that only the methylene hydrogens of butyronitrile are responsible for the self association among the butyronitrile molecules. In 1:1 complex, the red shift in the butyronitrile methyl asymmetric stretching mode is not due to the active participation of this group in heterointeractions and it is solely due to the other interactions happening in its vicinity. Only the interaction (TOL)C−H⋯N(BN) is present in the complex. In 1:2 complex the butyronitrile methyl/methylene hydrogens interact with the delocalized electron cloud of toluene and the toluene hydrogens interact with the butyronitrile nitrogen. Comparison of interaction energies shows that the stability of 1:2 complex is more than that of butyronitrile dimer and 1:1 complex.

    We also recommend Trading Suppliers and Manufacturers of TOLUENE (METHYL-D3) (cas 1124-18-1). Pls Click Website Link as below: cas 1124-18-1 suppliers


    Prev:Homo/hetero interactions in the binary solutions of toluene with acetonitrile: FTIR spectroscopic, theoretical and dielectric studies
    Next: Structural effect on the vapor-liquid equilibrium of toluene-ionic liquid systems)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View