Encyclopedia

  • Mechanistic investigation for the axisymmetric transport of nanocomposite molybdenum disulfide-silicon dioxide in ethylene glycol and sphericity assessment of nanoscale particles
  • Add time:09/26/2019         Source:infona.pl

    . The present paper provides a comparative analysis between nano and hybrid nanofluid axisymmetric flow towards a radially stretching porous surface along with heat transfer mechanism in the presence of magnetic force and internal heat source/sink. The effect of various shapes of nanoparticles is also taken into account. The physical flow problem is modeled and presented in cylindrical coordinates. Governing nonlinear equations are converted into a system of differential equations by using the similarity approach. Numerical results are computed by means of a well-established and stable numerical procedure. The main implication of this research is the influence of nanoparticle shapes, internal heating and applied magnetic field on fluid flow and heat transfer. Computational results are extracted out with the help of mathematics software MATLAB. One of the key findings of the present analysis is the fact that the maximum temperature is achieved for lamina-shaped SiO2 and MoS2-SiO2 nanoparticles and the lowest temperature is attained in the case of sphere-shaped nanoparticles.

    We also recommend Trading Suppliers and Manufacturers of SILICON DISULFIDE (cas 13759-10-9). Pls Click Website Link as below: cas 13759-10-9 suppliers


    Prev:Transfer of ultrathin molybdenum disulfide and transparent nanomesh electrode onto silicon for efficient heterojunction solar cells
    Next: Electronic structure of low-pressure and high-pressure phases of SILICON DISULFIDE (cas 13759-10-9))

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View