Encyclopedia

  • An exceptional irradiance-induced decrease of light trapping in two Tradescantia species: an unexpected relationship with the leaf architecture and Zeaxanthin (cas 144-68-3)-mediated photoprotection
  • Add time:09/30/2019         Source:infona.pl

    Leaf anatomy and irradiance-dependent leaf transmittance changes serving as irradiance acclimation mechanisms in leaves were studied in two ecologically contrasting Tradescantia species, a shade plant T. fluminensis Vell. and a sun plant T. sillamontana Matuda, grown at different irradiances. A dramatic increase in leaf thickness (2 to 4-fold) under a high growth irradiance (800 μmol m−2 s−1) compared with a low growth irradiance (60 μmol m−2 s−1), achieved mainly by expansion of the epidermis, was recorded in both species. The effect took place on the background of modest changes in mesophyll thickness (1.8-fold in T. fluminensis and 1.15-fold in T. sillamontana) and chloroplast size (0.8-fold in T. fluminensis and an insignificant change in T. sillamontana). Mesophyll structure and growth irradiance response did not seem to facilitate significantly light-dependent chloroplast (avoidance) movement in these species. Nevertheless, an exceptionally large (2 to 4-fold) irradiance-induced increase in light transmittance attributable to chloroplast avoidance movement was revealed. This increase by far exceeded that in other higher plants according to available literature. The magnitude of the irradiance-dependent transmittance changes positively correlated both with the rate of photosystem II recovery and with the extent of xanthophyll deepoxidation in the leaves. This was opposite to a negative correlation observed between the same parameters in different plant species. We hypothesize that, at the evolutionary timescale, chloroplast avoidance movement might adjust independently from other photoprotective mechanisms, e.g., non-photochemical quenching, whereas, on the ontogenetic timescale, adjustment of these mechanisms inevitably follows the same trend.

    We also recommend Trading Suppliers and Manufacturers of Zeaxanthin (cas 144-68-3). Pls Click Website Link as below: cas 144-68-3 suppliers


    Prev:Singlet oxygen triggers chloroplast rupture and cell death in the Zeaxanthin (cas 144-68-3) epoxidase defective mutant aba1 of Arabidopsis thaliana under high light stress
    Next: Modification of the Solid-State Nature of Sulfathiazole and Sulfathiazole sodium (cas 144-74-1) by Spray Drying)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View