Add time:07/16/2019 Source:sciencedirect.com
The aim of this work was to study and to model the biodegradation of atrazine and 2,4-dichlorophenoxy acetic acid by aerobic mixed cultures. Slow removal rates were observed when biodegrading atrazine, in spite of the initial concentrations. However, high removal rates were obtained when biodegrading 2,4-D, removing up to 100 mg/L in about 2 months. Regarding the 2,4-D it must be highlighted that a lag phase appears, being its length proportional to the initial 2,4-D concentration. The biodegradation trends were fitted to a Monod based model and the value of the main parameters determined. In the case of atrazine they were µmax: 0.011 1/d and Y: 0.53 g/g and in the case of 2,4-D µmax: 0.071 1/d and Y: 0.44 g/g, indicating the higher persistence of atrazine. Once finished the experiments the microbial population was characterized being the major genus Pseudomonas when treating atrazine and Rhodococcus when treating 2,4-D.
We also recommend Trading Suppliers and Manufacturers of 1-(2,4-Dichlorophenoxy)-2-ethoxyethane (cas 10140-84-8). Pls Click Website Link as below: cas 10140-84-8 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View