Encyclopedia

  • Size-dependent concentrations and bioaccessibility of organophosphate esters (OPEs) in indoor dust: A comparative study from a megacity and an e-waste recycling site
  • Add time:07/19/2019         Source:sciencedirect.com

    Indoor dust ingestion is an important pathway in human exposure to environmental pollutants, and the bioaccessibility of pollutants can largely influence human exposure risk assessment. In the present study, the concentrations and compositions of organophosphate esters (OPEs) were investigated for different sizes (50 μm to 2 mm) of indoor dust collected from a megacity, Guangzhou, and an e-waste recycling site. The concentrations of total OPEs were 5360 to 6830 ng/g and 560 to 20,500 ng/g across all sizes of dust from Guangzhou and the e-waste site, respectively. The levels and compositions of OPEs were consistent in different fractions of dust from Guangzhou. The highest concentrations of OPEs were found in the finest fraction of dust from the e-waste site. OPEs in Guangzhou dust showed decreasing bioaccessibility when the log KOW of FRs increased from 4 to 11. The bioaccessibility of most OPEs in dust from the e-waste site was much lower than those in Guangzhou dust, indicating low bioaccessibility in the components of dust, such as e-waste debris, from the e-waste site. The human exposure risks of OPEs in dust from Guangzhou were generally higher than those in dust from the e-waste site. Chitosan and montmorillonite could significantly decrease the bioaccessibility of all OPEs, except for tri-ethyl phosphate (TEP) and tris‑(2‑butoxyethyl) phosphate (TBOEP) in dust (p < 0.05), indicating chitosan and montmorillonite as promising food additives to enhance the elimination of OPEs.

    We also recommend Trading Suppliers and Manufacturers of Di[(E)-2-butenoic acid](E)-2-buten-1-ylidene ester (cas 10141-07-8). Pls Click Website Link as below: cas 10141-07-8 suppliers


    Prev:Synthesis of (E)-α,β-unsaturated carboxylic esters derivatives from cyanoacetic acid via promiscuous enzyme-promoted cascade esterification/Knoevenagel reaction
    Next: Nanoencapsulation of caffeic acid phenethyl ester in sucrose fatty acid esters to improve activities against cancer cells)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View