Encyclopedia

  • Effect of oxygen defects blocking barriers on gadolinium doped ceria (GDC) electro-chemo-mechanical properties
  • Add time:07/26/2019         Source:sciencedirect.com

    Some oxygen defective metal oxides, such as cerium and bismuth oxides, have recently shown exceptional electrostrictive properties that are even superior to the best performing lead-based electrostrictors, e.g. lead-magnesium-niobates (PMN). Compared to piezoelectric ceramics, electromechanical mechanisms of such materials do not depend on crystalline symmetry but on the concentration of oxygen vacancy (VO⋅⋅) in the lattice. In this work, we investigate for the first time the role of oxygen defects configuration on the electro-chemo-mechanical properties. This is achieved by tuning the oxygen defects blocking barrier density in polycrystalline gadolinium doped ceria with known oxygen vacancy concentration, Ce0.9Gd0.1O2-δ, δ = 0.05. Nanometric starting powders of ca. ∼12 nm are sintered in different conditions, including field assisted spark plasma sintering (SPS), fast firing and conventional method at high temperatures. These approaches allow controlling grain size and Gd-dopant diffusion, i.e. via thermally driven solute drag mechanism. By correlating the electro-chemo-mechanical properties, we show that oxygen vacancy distribution in the materials plays a key role in ceria electrostriction, overcoming the expected contributions from grain size and dopant concentration.

    We also recommend Trading Suppliers and Manufacturers of GADOLINIUM NITRATE (cas 10168-81-7). Pls Click Website Link as below: cas 10168-81-7 suppliers


    Prev:A new adsorbent of gadolinium-1,4-benzenedicarboxylate composite for better phosphorous removal in aqueous solutions
    Next: Structural study of holmium zirconate nanoparticles obtained through carbon neutral sol-gel process)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View