Welcome to LookChem.com Sign In|Join Free

CAS

  • or

150480-30-1

Post Buying Request

150480-30-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

150480-30-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 150480-30-1 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,5,0,4,8 and 0 respectively; the second part has 2 digits, 3 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 150480-30:
(8*1)+(7*5)+(6*0)+(5*4)+(4*8)+(3*0)+(2*3)+(1*0)=101
101 % 10 = 1
So 150480-30-1 is a valid CAS Registry Number.

150480-30-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-chlorobenzyl trimethylsilyl ether

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:150480-30-1 SDS

150480-30-1Relevant articles and documents

Nanoporous Na+-montmorillonite perchloric acid as an efficient and recyclable catalyst for the chemoselective protection of hydroxyl groups

Mashhadinezhad, Maryam,Shirini, Farhad,Mamaghani, Manouchehr

, p. 2099 - 2107 (2019/01/03)

Nanoporous Na+-montmorillonite perchloric acid as a novel heterogeneous reusable solid acid catalyst was easily prepared by treatment of Na+-montmorillonite as a cheap and commercially available support with perchloric acid. The catalyst was characterized using a variety of techniques including X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDX), pH analysis and determination of the Hammett acidity function. The prepared reagent showed excellent catalytic activity for the chemoselective conversion of alcohols and phenols to their corresponding trimethylsilyl ethers with 1,1,1,3,3,3-hexamethyldisilazane (HMDS) at room temperature. Deprotection of the resulting trimethylsilyl ethers can also be carried out using the same catalyst in ethanol. All reactions were performed under mild and completely heterogeneous reaction conditions in good to excellent yields. The notable advantages of this protocol are: short reaction times, high yields, availability and low cost of the reagent, easy work-up procedure and the reusability of the catalyst during a simple filtration.

Fast and efficient method for Silylation of alcohols and phenols with HMDS in the presence of bis-thiourea complexes of cobalt, nickel, copper and zinc chlorides

Zeynizadeh, Behzad,Sorkhabi, Serve

, p. 127 - 135 (2018/02/06)

Bis-thiourea complexes of cobalt, nickel, copper and zinc chlorides were used efficiently for rapid and efficient trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) in CH3CN. All reactions were carried out at room temperature within immediate-120?min timeframe to afford trimethylsilyl ether derivatives in high to excellent yields. Investigation of the results exhibited that the prepared bis-thiourea metal complexes show the activity as Co(tu)2Cl2> Ni(tu)2Cl2> Cu(tu)2Cl2> Zn(tu)2Cl2 in their silylation reactions.

Nano Fe3O4@ZrO2/SO42?: A highly efficient catalyst for the protection and deprotection of hydroxyl groups using HMDS under solvent-free condition

Ghafuri, Hossein,Paravand, Fatemeh,Rashidizadeh, Afsaneh

supporting information, p. 129 - 135 (2016/12/24)

In this work, we introduce a new procedure for the protection and deprotection process of various types of alcohols and phenols by HMDS in the presence of nano magnetic sulfated zirconia (Fe3O4@ZrO2/SO42?) as a solid acid catalyst under very mild and solvent-free condition. This method has interesting advantages like short reaction times and a simple workup process. With regard to some outstanding benefits of this new heterogeneous catalyst such as excellent yield, reusability of the catalyst and easy thermal stability, high acidity, strong and excellent magnetic properties, this method can be very interesting in aspect of green chemistry Principles.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 150480-30-1