Welcome to LookChem.com Sign In|Join Free

CAS

  • or

15310-01-7

Post Buying Request

15310-01-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

15310-01-7 Usage

Description

BENODANIL, a member of the benzamides class, is an obsolete fungicide that was once widely used to control rust diseases in crops. It is obtained by formal condensation of the carboxy group of 2-iodobenzoic acid with the amino group of aniline. Although it has been phased out in some regions, BENODANIL may still contribute to specific cytotoxic and genotoxic effects.

Uses

Used in Agricultural Industry:
BENODANIL is used as a fungicide for protecting crops and preventing the spread of certain plant diseases and illnesses. It was primarily employed to control rust diseases, which can cause significant damage to a variety of crops, affecting their growth and yield.

Check Digit Verification of cas no

The CAS Registry Mumber 15310-01-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,5,3,1 and 0 respectively; the second part has 2 digits, 0 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 15310-01:
(7*1)+(6*5)+(5*3)+(4*1)+(3*0)+(2*0)+(1*1)=57
57 % 10 = 7
So 15310-01-7 is a valid CAS Registry Number.
InChI:InChI=1/C13H10INO/c14-12-9-5-4-8-11(12)13(16)15-10-6-2-1-3-7-10/h1-9H,(H,15,16)

15310-01-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name benodanil

1.2 Other means of identification

Product number -
Other names N-phenyl-2-iodobenzamide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:15310-01-7 SDS

15310-01-7Relevant articles and documents

Inhibition of Pseudomonas aeruginosa Alginate Synthesis by Ebselen Oxide and Its Analogues

Kim, Soo-Kyoung,Ngo, Huy X.,Dennis, Emily K.,Thamban Chandrika, Nishad,Deshong, Philip,Garneau-Tsodikova, Sylvie,Lee, Vincent T.

, p. 1713 - 1726 (2021)

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that is frequently found in the airways of cystic fibrosis (CF) patients due to the dehydrated mucus that collapses the underlying cilia and prevents mucociliary clearance. During this life-long chronic infection, P. aeruginosa cell accumulates mutations that lead to inactivation of the mucA gene that results in the constitutive expression of algD-algA operon and the production of alginate exopolysaccharide. The viscous alginate polysaccharide further occludes the airways of CF patients and serves as a protective matrix to shield P. aeruginosa from host immune cells and antibiotic therapy. Development of inhibitors of alginate production by P. aeruginosa would reduce the negative impact from this viscous polysaccharide. In addition to transcriptional regulation, alginate biosynthesis requires allosteric activation by bis (3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) binding to an Alg44 protein. Previously, we found that ebselen (Eb) and ebselen oxide (EbO) inhibited diguanylate cyclase from synthesizing c-di-GMP. In this study, we show that EbO, Eb, ebsulfur (EbS), and their analogues inhibit alginate production. Eb and EbS can covalently modify the cysteine 98 (C98) residue of Alg44 and prevent its ability to bind c-di-GMP. However, P. aeruginosa with Alg44 C98 substituted with alanine or serine was still inhibited for alginate production by Eb and EbS. Our results indicate that EbO, Eb, and EbS are lead compounds for reducing alginate production by P. aeruginosa. Future development of these inhibitors could provide a potential treatment for CF patients infected with mucoid P. aeruginosa.

The Mpro structure-based modifications of ebselen derivatives for improved antiviral activity against SARS-CoV-2 virus

Jin, Lin,Luo, Jiajie,Qiao, Zhen,Wang, KeWei,Wei, Ningning,Zhang, Hongyi,Zhang, Yanru

, (2021/11/09)

The main protease (Mpro or 3CLpro) of SARS-CoV-2 virus is a cysteine enzyme critical for viral replication and transcription, thus indicating a potential target for antiviral therapy. A recent repurposing effort has identified ebselen, a multifunctional drug candidate as an inhibitor of Mpro. Our docking of ebselen to the binding pocket of Mpro crystal structure suggests a noncovalent interaction for improvement of potency, antiviral activity and selectivity. To test this hypothesis, we designed and synthesized ebselen derivatives aimed at enhancing their non-covalent bonds within Mpro. The inhibition of Mpro by ebselen derivatives (0.3 μM) was screened in both HPLC and FRET assays. Nine ebselen derivatives (EBs) exhibited stronger inhibitory effect on Mpro with IC50 of 0.07–0.38 μM. Further evaluation of three derivatives showed that EB2-7 exhibited the most potent inhibition of SARS-CoV-2 viral replication with an IC50 value of 4.08 μM in HPAepiC cells, as compared to the prototype ebselen at 24.61 μM. Mechanistically, EB2-7 functions as a noncovalent Mpro inhibitor in LC-MS/MS assay. Taken together, our identification of ebselen derivatives with improved antiviral activity may lead to developmental potential for treatment of COVID-19 and SARS-CoV-2 infection.

A facile and versatile electro-reductive system for hydrodefunctionalization under ambient conditions

Huang, Binbin,Guo, Lin,Xia, Wujiong

supporting information, p. 2095 - 2103 (2021/03/26)

A general electrochemical system for reductive hydrodefunctionalization is described, employing the inexpensive and easily available triethylamine (Et3N) as a sacrificial reductant. This protocol is characterized by facile operation, sustainable conditions, and exceptionally wide substrate scope covering the cleavage of C-halogen, N-S, N-C, O-S, O-C, C-C and C-N bonds. Notably, the selectivity and capability of reduction can be conveniently switched by simple incorporation or removal of an alcohol as a co-solvent.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 15310-01-7