Welcome to LookChem.com Sign In|Join Free

CAS

  • or

20850-01-5

Post Buying Request

20850-01-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

20850-01-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 20850-01-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,0,8,5 and 0 respectively; the second part has 2 digits, 0 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 20850-01:
(7*2)+(6*0)+(5*8)+(4*5)+(3*0)+(2*0)+(1*1)=75
75 % 10 = 5
So 20850-01-5 is a valid CAS Registry Number.

20850-01-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-methylcinnamyl alcohol

1.2 Other means of identification

Product number -
Other names 2-methyl-cinnamyl alcohol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:20850-01-5 SDS

20850-01-5Relevant articles and documents

Intramolecular Sakurai Allylation of Geminal Bis(silyl) Enamide with Indolenine. A Diastereoselective Cyclization to Form Functionalized Hexahydropyrido[3,4- b]Indole

Chen, Yi,Gao, Lu,Song, Xuanyi,Song, Zhenlei

supporting information, p. 124 - 128 (2021/01/13)

A fluoride-promoted intramolecular Sakurai allylation of geminal bis(silyl) enamide with indolenine has been developed. The reaction facilitates an efficient cyclization to give hexahydropyrido[3,4-b]indoles in good yields with high diastereoselectivity. The resulted cis, trans-stereochemistry further enables the ring-closing metathesis (RCM) reaction of two alkene moieties, giving a tetracyclic N-hetereocycle widely found as the core structure in akuammiline alkaloids.

Ternary Catalysis Enabled Three-Component Asymmetric Allylic Alkylation as a Concise Track to Chiral α,α-Disubstituted Ketones

Chang, Wenju,Fu, Xiang,Hu, Wenhao,Kang, Zhenghui,Liang, Yong,Tian, Xue,Xu, Xinfang,Zhao, Wenxuan

, p. 20818 - 20827 (2021/12/17)

Multicomponent reactions that involve interception of onium ylides through Aldol, Mannich, and Michael addition with corresponding bench-stable acceptors have demonstrated broad applications in synthetic chemistry. However, because of the high reactivity and transient survival of these in situ generated intermediates, the substitution-type interception process, especially the asymmetric catalytic version, remains hitherto unknown. Herein, a three-component asymmetric allylation of α-diazo carbonyl compounds with alcohols and allyl carbonates is disclosed by employing a ternary cooperative catalysis of achiral Pd-complex, Rh2(OAc)4, and chiral phosphoric acid CPA. This method represents the first example of three-component asymmetric allylic alkylation through an SN1-type trapping process, which involves a convergent assembly of two active intermediates, Pd-allyl species, and enol derived from onium ylides, providing an expeditious access to chiral α,α-disubstituted ketones in good to high yields with high to excellent enantioselectivity. Combined experimental and computational studies have shed light on the mechanism of this novel three-component reaction, including the critical role of Xantphos ligand and the origin of enantioselectivity.

Highly Enantioselective Synthesis of Functionalized Glutarimide Using Oxidative N-Heterocyclic Carbene Catalysis: A Formal Synthesis of (?)-Paroxetine

Porey, Arka,Santra, Surojit,Guin, Joyram

supporting information, p. 5313 - 5327 (2019/04/16)

A simple yet highly effective approach toward enantioselective synthesis of trans-3,4-disubstituted glutarimides from readily available starting materials is developed using oxidative N-heterocyclic carbene catalysis. The catalytic reaction involves a formal [3 + 3] annulation between enals and substituted malonamides enabling the production of glutarimide derivatives in a single chemical operation via concomitant formation of C-C and C-N bonds. The reaction offers easy access to a broad range of functionalized glutarimides with excellent enantioselectivity and good yield. Synthetic application of the method is demonstrated via formal synthesis of (?)-paroxetine and other bioactive molecules.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 20850-01-5