Welcome to LookChem.com Sign In|Join Free

CAS

  • or

57700-94-4

Post Buying Request

57700-94-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

57700-94-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 57700-94-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,7,7,0 and 0 respectively; the second part has 2 digits, 9 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 57700-94:
(7*5)+(6*7)+(5*7)+(4*0)+(3*0)+(2*9)+(1*4)=134
134 % 10 = 4
So 57700-94-4 is a valid CAS Registry Number.
InChI:InChI=1/C13H17NO2/c1-16-12-7-5-11(6-8-12)13(15)14-9-3-2-4-10-14/h5-8H,2-4,9-10H2,1H3

57700-94-4Relevant articles and documents

Copper and N-Heterocyclic Carbene-Catalyzed Oxidative Amidation of Aldehydes with Amines

Singh, Ashmita,Narula, Anudeep Kumar

supporting information, p. 718 - 722 (2021/02/26)

A one-pot two-step oxidative process has been developed for the tert-butyl hydroperoxide mediated transformation of aldehydes and amines into amides catalyzed by copper(I) iodide and an N-heterocyclic carbene. The process is additive-free and does not require the amine to be transformed into its hydrochloride salts. The method is simple and practicable, has a broad substrate scope, and uses economical, feasible, and abundant reagents.

Hydrosilylative reduction of primary amides to primary amines catalyzed by a terminal [Ni-OH] complex

Pandey, Pragati,Bera, Jitendra K.

supporting information, p. 9204 - 9207 (2021/09/20)

A terminal [Ni-OH] complex1, supported by triflamide-functionalized NHC ligands, catalyzes the hydrosilylative reduction of a range of primary amides into primary amines in good to excellent yields under base-free conditions with key functional group tolerance. Catalyst1is also effective for the reduction of a variety of tertiary and secondary amides. In contrast to literature reports, the reactivity of1towards amide reduction follows an inverse trend,i.e., 1° amide > 3° amide > 2° amide. The reaction does not follow a usual dehydration pathway.

Photocatalytic aldehydes/alcohols/toluenes oxidative amidation over bifunctional Pd/MOFs: Effect of Fe-O clusters and Lewis acid sites

Bian, Fengxia,Cheng, Hongmei,Jiang, Heyan,Sun, Bin,Tan, Jiangwei,Zang, Cuicui

, p. 279 - 287 (2021/08/21)

Heterogeneous photocatalytic organic synthesis is fascinating because of the utilization of ubiquitous solar light for chemical transformations. Here, three Fe-MOFs with different Fe-O clusters, Lewis acid sites and morphologies were synthesized through coordination structure engineering. Pd/Fe-MOFs nanocomposites were used to challenge the amide bond green synthesis with visible light. Pd/MIL-101(Fe) exhibited the best photocatalytic performance due to the easily excited Fe3-μ3-oxo clusters for light absorption, the efficient photogenerated carriers separation and migration, the large amount of Lewis acid sites based aldehydes and amines condensation promotion and the efficient O2 reduction to superoxide radicals over photogenerated electron-rich Pd NPs. Various aldehydes, alcohols and toluenes could be transformed to amide compounds with amines over Pd/MIL-101(Fe) with just oxygen or air as the green oxidant and water as the by-product. One-pot C–C cross-coupling and photo-redox C–N coupling cascade reactions could also be achieved over Pd/MIL-101(Fe). This work shed light on the efficient and sustainable amide bonds synthesis.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 57700-94-4