Welcome to LookChem.com Sign In|Join Free

CAS

  • or

68208-18-4

Post Buying Request

68208-18-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

68208-18-4 Usage

Chemical Properties

white to off-white granular or crystalline powder

Check Digit Verification of cas no

The CAS Registry Mumber 68208-18-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,8,2,0 and 8 respectively; the second part has 2 digits, 1 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 68208-18:
(7*6)+(6*8)+(5*2)+(4*0)+(3*8)+(2*1)+(1*8)=134
134 % 10 = 4
So 68208-18-4 is a valid CAS Registry Number.
InChI:InChI=1/C10H13NO2/c1-7-2-4-8(5-3-7)9(11)6-10(12)13/h2-5,9H,6,11H2,1H3,(H,12,13)

68208-18-4Relevant articles and documents

Base-induced Sommelet–Hauser rearrangement of N-(α-(2-oxyethyl)branched)benzylic glycine ester-derived ammonium salts via a chelated intermediate

Baba, Souya,Hirano, Kazuki,Tayama, Eiji

supporting information, (2020/03/13)

The base-induced Sommelet–Hauser (S–H) rearrangement of N-(α-branched)benzylic glycine ester-derived ammonium salts 1 was investigated. When the α-branched substituent was a simple alkyl, such as a methyl or butyl, desired S–H rearrangement product 2 was obtained in low yield with formation of the [1,2] Stevens rearranged 4 and Hofmann eliminated products 5 and 6. However, when the α-branched substituent had a 2-oxy moiety, such as 2-acetoxyethyl or 2-benzoyloxyethyl, the yields of 2 were improved. These results could be explained by formation of chelated intermediate C that stabilizes the carbanionic ylide, and the subsequent initial dearomative [2,3] sigmatropic rearrangement would be accelerated. The existence of C was supported by mechanistic experiments. This enhancement effect is not very strong or effective; however, it will expand the synthetic usefulness of ammonium ylide rearrangements.

Synthesis and biological evaluation of 3-phenyl-3-aryl carboxamido propanoic acid derivatives as small molecule inhibitors of retinoic acid 4-hydroxylase (CYP26A1)

Zhao, Dongmei,Sun, Bin,Ren, Jinhong,Li, Fengrong,Song, Shuai,Lv, Xuejiao,Hao, Chenzhou,Cheng, Maosheng

, p. 1356 - 1365 (2015/03/04)

All-trans-retinoic acid (ATRA), the biologically active metabolite of vitamin A, is used medicinally for the treatment of hyperproliferative diseases and cancers. However, it is easily metabolized. In this study, the leading compound S8 was found based on virtual screening. To improve the activity of the leading compound S8, a series of novel S8 derivatives were designed, synthesized and evaluated for their in vitro biological activities. All of the prepared compounds showed that substituting the 5-chloro-3-methyl-1-phenyl-1H-pyrazole group for the 2-tertbutyl-5-methylfuran scaffold led to a clear increase in the biological activity. The most promising compound 32, with a CYP26A1 IC50 value of 1.36 μM (compared to liarozole (IC50 = 2.45 μM) and S8 (IC50 = 3.21 μM)) displayed strong inhibitory and differentiation activity against HL60 cells. In addition, the study focused on the effect of β-phenylalanine, which forms the coordination bond with the heme of CYP26A1. These studies suggest that the compound 32 can be used as an appropriate candidate for future development.

Stereoselective chemoenzymatic preparation of β-amino esters: Molecular modelling considerations in lipase-mediated processes and application to the synthesis of (S)-dapoxetine

Rodriguez-Mata, Maria,Garcia-Urdiales, Eduardo,Gotor-Fernandez, Vicente,Gotor, Vicente

supporting information; experimental part, p. 395 - 406 (2010/06/15)

A wide range of optically active 3-amino-3-arylpropanoic acid derivatives have been prepared by means of a stereoselective chemoenzymatic route. The key step is the kinetic resolution of the corresponding β-amino esters. Although the enzymatic acylations of the amino group with ethyl methoxyacetate showed synthetically useful enantioselectivities, the hydrolyses of the ester group catalyzed by lipase from Pseudomonas cepacia have been identified as the optimal processes concerning both activity and enantioselectivity. The enantiopreference of this lipase in these reactions has been explained, at the molecular level, by using a fragment-based approach in which the most favoured binding site for a phenyl ring and the most stable conformation of the 3-aminopropanoate core nicely match the (S)-configuration of the major products. The conversion and enantioselectivity values of the enzymatic reactions have been compared in order to understand the influence of the different substitution patterns present in the phenyl ring. This chemoenzymatic route has been successfully applied to the preparation of a valuable intermediate in the synthesis of (S)-dapoxetine, which has been chemically synthesised in excellent optical purity.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 68208-18-4