Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7469-80-9

Post Buying Request

7469-80-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7469-80-9 Usage

Uses

Cyclohexyl-(4-methoxyphenyl)methanone is a useful chemical for research.

Preparation

Obtained by Friedel–Crafts acylation of anisole with cyclohexanecarbonyl chloride on mesoporous silica catalyst MCM-41 (73%).

Check Digit Verification of cas no

The CAS Registry Mumber 7469-80-9 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,4,6 and 9 respectively; the second part has 2 digits, 8 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 7469-80:
(6*7)+(5*4)+(4*6)+(3*9)+(2*8)+(1*0)=129
129 % 10 = 9
So 7469-80-9 is a valid CAS Registry Number.
InChI:InChI=1/C14H18O2/c1-16-13-9-7-12(8-10-13)14(15)11-5-3-2-4-6-11/h7-11H,2-6H2,1H3

7469-80-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name cyclohexyl-(4-methoxyphenyl)methanone

1.2 Other means of identification

Product number -
Other names cyclohexyl-(4-methoxy-phenyl)-methanone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7469-80-9 SDS

7469-80-9Relevant articles and documents

From Esters to Ketones via a Photoredox-Assisted Reductive Acyl Cross-Coupling Strategy

Chen, Yukun,Li, Weirong,Luo, Yixin,Qi, Xiaotian,Xi, Xiaoxiang,Xu, Minghao,Yuan, Weiming,Zhao, Hongping,Zheng, Songlin

supporting information, (2021/12/06)

A method was developed for ketone synthesis via a photoredox-assisted reductive acyl cross-coupling (PARAC) using a nickel/photoredox dual-catalyzed cross-electrophile coupling of two different carboxylic acid esters. A variety of aryl, 1°, 2°, 3°-alkyl 2-pyridyl esters can act as acyl electrophiles while N-(acyloxy)phthalimides (NHPI esters) act as 1°, 2°, 3°-radical precursors. Our PARAC strategy provides an alternative and reliable way to synthesize various sterically congested 3°-3°, 3°-2°, and aryl-3° ketones under mild and highly unified conditions, which have been otherwise difficult to access. The combined experimental and computational studies identified a Ni0/NiI/NiIII pathway for ketone formation.

Palladium-NHC (NHC = N-heterocyclic Carbene)-Catalyzed Suzuki-Miyaura Cross-Coupling of Alkyl Amides

Wang, Chang-An,Rahman, Md. Mahbubur,Bisz, Elwira,Dziuk, B?az?ej,Szostak, Roman,Szostak, Michal

, p. 2426 - 2433 (2022/02/17)

We report the Pd-catalyzed Suzuki-Miyaura cross-coupling of aliphatic amides. Although tremendous advances have been made in the cross-coupling of aromatic amides, C-C bond formation from aliphatic amides by selective N-C(O) cleavage has remained a major challenge. This longstanding problem in Pd catalysis has been addressed herein by a combination of (1) the discovery of N,N-pym/Boc amides as a class of readily accessible amide-based reagents for cross-coupling and (2) steric tuning of well-defined Pd(II)-NHC catalysts for cross-coupling. The methodology is effective for the cross-coupling of an array of 3°, 2°, and 1° aliphatic amide derivatives. The catalyst system is user-friendly, since the catalysts are readily available and are air- and bench-stable. Mechanistic studies strongly support an amide bond twist and external nN → π*C═O/Ar delocalization as a unified enabling feature of N,N-pym/Boc amides in selective N-C(O) bond activation. The method provides a rare example of Pd-NHC-catalyzed cross-coupling of aliphatic acyl amide electrophiles.

Nickel-Mediated Photoreductive Cross Coupling of Carboxylic Acid Derivatives for Ketone Synthesis**

Brauer, Jan,Quraishi, Elisabeth,Kammer, Lisa Marie,Opatz, Till

supporting information, p. 18168 - 18174 (2021/11/30)

A simple visible light photochemical, nickel-catalyzed synthesis of ketones from carboxylic acid-derived precursors is presented. Hantzsch ester (HE) functions as a cheap, green and strong photoreductant to facilitate radical generation and also engages in the Ni-catalytic cycle to restore the reactive species. With this dual role, HE allows for the coupling of a large variety of radicals (1°,2°, benzylic, α-oxy & α-amino) with aroyl and alkanoyl moieties, a new feature in reactions of this type. With both precursors deriving from abundant carboxylic acids, this protocol is a welcome addition to the organic chemistry toolbox. The reaction proceeds under mild conditions without the need for toxic metal reagents or bases and shows a wide scope, including pharmaceuticals and complex molecular architectures.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7469-80-9