Welcome to LookChem.com Sign In|Join Free

CAS

  • or

97466-49-4

Post Buying Request

97466-49-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

97466-49-4 Usage

Uses

(S)-4-Chlorostyrene oxide is used in the biosynthetic preparation though epoxidation of styrene and substituted styrenes by whole cells of Mycobacterium.

Check Digit Verification of cas no

The CAS Registry Mumber 97466-49-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 9,7,4,6 and 6 respectively; the second part has 2 digits, 4 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 97466-49:
(7*9)+(6*7)+(5*4)+(4*6)+(3*6)+(2*4)+(1*9)=184
184 % 10 = 4
So 97466-49-4 is a valid CAS Registry Number.

97466-49-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name (2S)-2-(4-chlorophenyl)oxirane

1.2 Other means of identification

Product number -
Other names (S)-(+)-(4-chlorophenyl)oxirane

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:97466-49-4 SDS

97466-49-4Relevant articles and documents

A new clade of styrene monooxygenases for (R)-selective epoxidation

Xiao, Hu,Dong, Shuang,Liu, Yan,Pei, Xiao-Qiong,Lin, Hui,Wu, Zhong-Liu

, p. 2195 - 2201 (2021/04/12)

Styrene monooxygenases (SMOs) are excellent enzymes for the production of (S)-enantiopure epoxides, but so far, only one (R)-selective SMO has been identified with a narrow substrate spectrum. Mining the NCBI non-redundant protein sequences returned a new distinct clade of (R)-selective SMOs. Among them,SeStyA fromStreptomyces exfoliatus,AaStyA fromAmycolatopsis albispora, andPbStyA fromPseudonocardiaceaewere carefully characterized and found to convert a spectrum of styrene analogues into the corresponding (R)-epoxides with up to >99% ee. Moreover, site 46 (AaStyA numbering) was identified as a critical residue that affects the enantioselectivity of SMOs. Phenylalanine at site 46 was required for the (R)-selective SMO to endow excellent enantioselectivity. The identification of new (R)-selective SMOs would add a valuable green alternative to the synthetic tool box for the synthesis of enantiopure (R)-epoxides.

Production of enantiopure chiral epoxides with e. Coli expressing styrene monooxygenase

?tadániová, Radka,Fischer, Róbert,Gyuranová, Dominika,Hegyi, Zuzana,Rebro?, Martin

, (2021/06/15)

Styrene monooxygenases are a group of highly selective enzymes able to catalyse the epoxidation of alkenes to corresponding chiral epoxides in excellent enantiopurity. Chiral compounds containing oxirane ring or products of their hydrolysis represent key building blocks and precursors in organic synthesis in the pharmaceutical industry, and many of them are produced on an industrial scale. Two-component recombinant styrene monooxygenase (SMO) from Marinobacterium litorale was expressed as a fused protein (StyAL2StyB) in Escherichia coli BL21(DE3). By high cell density fermentation, 35 gDCW/L of biomass with overexpressed SMO was produced. SMO exhibited excellent stability, broad substrate specificity, and enantioselectivity, as it remained active for months and converted a group of alkenes to corresponding chiral epoxides in high enantiomeric excess (>95–99% ee). Optically pure (S)-4-chlorostyrene oxide, (S)-allylbenzene oxide, (2R,5R)-1,2:5,6-diepoxyhexane, 2-(3-bromopropyl)oxirane, and (S)-4-(oxiran-2-yl)butan-1-ol were prepared by whole-cell SMO.

The Stereoselective Oxidation of para-Substituted Benzenes by a Cytochrome P450 Biocatalyst

Chao, Rebecca R.,Lau, Ian C.-K.,Coleman, Tom,Churchman, Luke R.,Child, Stella A.,Lee, Joel H. Z.,Bruning, John B.,De Voss, James J.,Bell, Stephen G.

, p. 14765 - 14777 (2021/09/14)

The serine 244 to aspartate (S244D) variant of the cytochrome P450 enzyme CYP199A4 was used to expand its substrate range beyond benzoic acids. Substrates, in which the carboxylate group of the benzoic acid moiety is replaced were oxidised with high activity by the S244D mutant (product formation rates >60 nmol.(nmol-CYP)?1.min?1) and with total turnover numbers of up to 20,000. Ethyl α-hydroxylation was more rapid than methyl oxidation, styrene epoxidation and S-oxidation. The S244D mutant catalysed the ethyl hydroxylation, epoxidation and sulfoxidation reactions with an excess of one stereoisomer (in some instances up to >98 %). The crystal structure of 4-methoxybenzoic acid-bound CYP199A4 S244D showed that the active site architecture and the substrate orientation were similar to that of the WT enzyme. Overall, this work demonstrates that CYP199A4 can catalyse the stereoselective hydroxylation, epoxidation or sulfoxidation of substituted benzene substrates under mild conditions resulting in more sustainable transformations using this heme monooxygenase enzyme.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 97466-49-4