Add time:07/27/2019 Source:sciencedirect.com
The recent synthesis by Vidović and Aldridge of the complex (η5-C5H5)2Ru2(CO)4(μ-BF) containing the fluoroborylene ligand (BF), isoelectronic with CO, suggests the possibility of introducing the BF ligand into binuclear cobalt carbonyl derivatives of the type Co2(BF)2(CO)n (n = 7, 6, 5, 4, 3). This has now been explored using density functional theory. Structures in which both BF groups bridge a cobalt–cobalt bond are energetically preferred for the Co2(BF)2(CO)n (n = 6, 5, 4, 3) derivatives over other types of structures. Thus the Co2(μ-BF)2(CO)6 structure with two bridging BF groups lies more than 18 kcal/mol below the next lowest Co2(BF)2(CO)6 structure and appears to be a reasonable synthetic objective. This differs from the well-known isoelectronic Co2(CO)8 for which the structures with two bridging CO groups and with all terminal CO groups are so close in energy that they are found experimentally to exist in equilibrium. Examples of Co2(B2F2)(CO)n (n = 7, 4, 3) derivatives are found in which the two BF groups have coupled to form a bridging difluorodiborene (B2F2) ligand with a B–B distance of ∼1.9 Å. However, the Co2(B2F2)(CO)7 structures do not appear to be viable since loss of a CO group to give Co2(BF)2(CO)6 is predicted to be an exothermic process.
We also recommend Trading Suppliers and Manufacturers of COBALT CARBONYL (cas 10210-68-1). Pls Click Website Link as below: cas 10210-68-1 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View