Encyclopedia

  • On s-hamiltonian line graphs of claw-free graphs
  • Add time:08/14/2019         Source:sciencedirect.com

    For an integer s≥0, a graph G is s-hamiltonian if for any vertex subset S⊆V(G) with |S|≤s, G−S is hamiltonian, and G is s-hamiltonian connected if for any vertex subset S⊆V(G) with |S|≤s, G−S is hamiltonian connected. Thomassen in 1984 conjectured that every 4-connected line graph is hamiltonian (see Thomassen, 1986), and Kučzel and Xiong in 2004 conjectured that every 4-connected line graph is hamiltonian connected (see Ryjáček and Vrána, 2011). In Broersma and Veldman (1987), Broersma and Veldman raised the characterization problem of s-hamiltonian line graphs. In Lai and Shao (2013), it is conjectured that for s≥2, a line graph L(G) is s-hamiltonian if and only if L(G) is (s+2)-connected. In this paper we prove the following.(i) For an integer s≥2, the line graph L(G) of a claw-free graph G is s-hamiltonian if and only if L(G) is (s+2)-connected.(ii) The line graph L(G) of a claw-free graph G is 1-hamiltonian connected if and only if L(G) is 4-connected.

    We also recommend Trading Suppliers and Manufacturers of (S)-(+)-2-METHYLGLUTARIC ACID (cas 1115-82-8). Pls Click Website Link as below: cas 1115-82-8 suppliers


    Prev:Study of the s−s¯ asymmetry in the proton
    Next: A compact linear-cavity multi-wavelength Brillouin/thulium fiber laser in S/S+-band)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View