A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utili...
Terbium and rare earths recovery from fluorescent powders of exhausted lamps by acid leaching with hydrochloric acid was the objective of this study. In order to investigate the factors affecting leaching a series of experiments was performed in according to a full factorial plan with four varia...
With the rapid growth of agricultural and industrial sectors, a significant quantity of sulfide is released into water resources systems at an increasing rate. This has caused serious environmental problems, which calls for the development of sensitive and selective methods for determining sulfi...
Green emitting novel Terbium oxalate decahydrate nanophosphor (Tb2(C2O4)3.10H2O) with particle size in the range 2–4 nm, was synthesized by microwave assisted co-precipitation method. The structure and particle size of the sample were elucidated by X-ray powder diffraction and TEM analysis. The...
Terbium (0, 2, and 4 at%)-doped ZnS quantum dots (QDs) were synthesized via a solvothermal method. The crystal structures of the synthesized QDs were determined to be zinc blend by X-ray powder diffraction (XRD) and Raman analyses. Transmission electron microscopy (TEM) studies revealed that par...
A fluorescent probe for mercury(II) ions, based on the quenching of fluorescence of terbium(III) ions doped in CdS nanoparticles, has been developed. The terbium(III)-doped cadmium sulfide composite nanoparticles were successfully synthesized through a straightforward one-pot process, with the b...
Highly crystalline polyethylene glycol (PEG) coated Tb3+ doped ZnS nanoparticles have been synthesized and successfully used for norfloxacin sensing. The crystallographic and morphological analyses of PEG coated Tb3+ doped ZnS nanoparticles were performed by X-ray diffraction and Transmission el...
It is of great importance to simply and sensitively detect hydrogen sulfide (H2S) because of its role in various physiological processes as well as its inherent toxicity. In this work, a colorimetric method for H2S detection was developed by employing terbium-G-quadruplex-hemin (Tb/G4-hemin) DNA...
Tungsten is of extraordinarily high concentrations in the geothermal waters discharging from several representative Tibetan magmatic hydrothermal systems (up to 1103 μg/L), which are also characterized by exceptionally high W/Mo molar ratios (up to 1182). The geochemical origins of the tungsten...
Metal oxide nanostructures like tungsten oxide nanowires are intensively studied materials for sensor applications. In this work we report on tungsten oxide gas sensors integrated on a CMOS fabricated microhotplate chip. Tungsten oxide gas sensors were prepared by drop coating of a nanowire netw...
The tribological properties of a tungsten disulfide solid lubricant film prepared by atomic layer deposition were investigated. The WS2 film was deposited using tungsten hexacarbonyl and hydrogen sulfide as precursors. The results showed that due to the incomplete reaction of tungsten hexacarbon...
In this work, we have described a facile fabrication of molybdenum-tungsten sulfide on carbon cloth (Mo-W-S/CC) by one-step electrodeposition process. The morphology, composition and catalytic property of as-prepared samples have been characterized through scanning electron microscopy (SEM), ene...
The hydrogen evolution reaction (HER), an appealing solution for future energy supply, requires efficient and inexpensive electrocatalysts with abundant active surface sites. Although crystalline MoS2 and WS2 are promising candidates, their activity is dominated by edge sites. Amorphous tungsten...
Development of efficient and economical electrochemical systems for water splitting is a key part of renewable energy technology. Amorphous films of tungsten sulfide have been deposited by electrochemical reduction of tetrathiotungstate ions (WS42−) on dealloyed nanoporous gold (NPG) for electro...
A novel fiber-optic hydrogen sulfide sensor based on a thin-core Mach-Zehnder fiber modal interferometer (TMZFI) is demonstrated and fabricated. This in-line interferometer is composed of a short section of thin-core fiber sandwiched between two standard single mode fibers, and the fast response...
Lithium-sulfur battery is one of the most promising next-generation energy storage devices owing to its high energy density and environment friendliness. However, the low electronic conductivity of sulfur and the high solubility of intermediates in electrolyte are the challenges for its wide app...
Transition binary metal sulfides have fascinated much attention as electrode materials for energy storage applications. Herein, we report the use of binder-free copper tungsten sulfide (CWS) anchored on Ni foam and investigated its electrochemical properties as a negative electrode for supercapa...
Column chromatographic methods have been developed to separate no-carrier-added 111Ag from proton irradiated thorium targets and associated fission products as an ancillary process to an existing 225Ac separation design. Herein we report the separation of 111Ag both prior and subsequent to 225Ac...
We have performed experiments at 1.5 GPa over the temperature range 1400–2100 °C to determine the partitioning of lithophile elements (U, Th, Eu, Sm, Nd, Zr, La, Ce, Yb) between sulfide liquid, low-S metals and silicate melt. The data demonstrate pronounced increases in partitioning of all the...
We present a chemical bath deposition process for alloying PbS thin films with 232Th, a stable isotope of thorium, to provide a model system for radiation damage studies. Variation of deposition parameters such as temperature, reagent concentrations and time allows controlling the properties of ...
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View