Welcome to LookChem.com Sign In|Join Free

CAS

  • or

34967-24-3

Post Buying Request

34967-24-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

34967-24-3 Usage

Description

3,5-Dimethoxybenzylamine is a colorless to light yellow liquid compound prepared by the LiAlH4-reduction of 3,5-dimethoxybenzaldoxime. It is an organic compound with potential applications in various chemical and pharmaceutical processes.

Uses

Used in Chemical Synthesis:
3,5-Dimethoxybenzylamine is used as a chemical intermediate for the preparation of trisammonium tris(hexafluoro phosphate) salt. This salt is an important compound in the field of chemistry, particularly in the synthesis of various organic and inorganic materials.
Used in Pharmaceutical Applications:
3,5-Dimethoxybenzylamine is used in the synthesis of well-defined, homogeneous [n]rotaxanes (n up to 11) by a template-directed thermodynamic clipping approach. Rotaxanes are a type of molecular machine with potential applications in drug delivery, molecular recognition, and sensing. The synthesis of these complex structures using 3,5-dimethoxybenzylamine highlights its importance in the development of novel pharmaceutical compounds and materials.

Check Digit Verification of cas no

The CAS Registry Mumber 34967-24-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,4,9,6 and 7 respectively; the second part has 2 digits, 2 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 34967-24:
(7*3)+(6*4)+(5*9)+(4*6)+(3*7)+(2*2)+(1*4)=143
143 % 10 = 3
So 34967-24-3 is a valid CAS Registry Number.
InChI:InChI=1/C9H13NO2/c1-11-8-3-7(6-10)4-9(5-8)12-2/h3-5H,6,10H2,1-2H3

34967-24-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name 3,5-Dimethoxybenzylamine

1.2 Other means of identification

Product number -
Other names 3,5-Dimethoxy benzyl amine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:34967-24-3 SDS

34967-24-3Relevant articles and documents

Selective catalysis for the reductive amination of furfural toward furfurylamine by graphene-co-shelled cobalt nanoparticles

Liu, Jianguo,Ma, Longlong,Zhong, Shurong,Zhuang, Xiuzheng

, p. 271 - 284 (2022/01/19)

Amines with functional groups are widely used in the manufacture of pharmaceuticals, agricultural chemicals, and polymers but most of them are still prepared through petrochemical routes. The sustainable production of amines from renewable resources, such as biomass, is thus necessary. For this reason, we developed an eco-friendly, simplified, and highly effective procedure for the preparation of a non-toxic heterogeneous catalyst based on earth-abundant metals, whose catalytic activity on the reductive amination of furfural or other derivatives (more than 24 examples) proved to be broadly available. More surprisingly, the cobalt-supported catalyst was found to be magnetically recoverable and reusable up to eight times with an excellent catalytic activity; on the other hand, the gram-scale tests catalyzed by the same catalyst exhibited the similar yield of the target products in comparison to its smaller scale, which was comparable to the commercial noble-based catalysts. Further results from a series of analytical technologies involving XRD, XPS, TEM/mapping, and in situ FTIR revealed that the structural features of the catalyst are closely in relation to its catalytic mechanisms. In simple terms, the outer graphitic shell is activated by the electronic interaction as well as the induced charge redistribution, enabling the easy substitution of the –NH2 moiety toward functionalized and structurally diverse molecules, even under very mild industrially viable and scalable conditions. Overall, this newly developed catalyst introduces the synthesis of amines from biomass-derived platforms with satisfactory selectivity and carbon balance, providing cost-effective and sustainable access to the wide applications of reductive amination.

Facile synthesis of controllable graphene-co-shelled reusable Ni/NiO nanoparticles and their application in the synthesis of amines under mild conditions

Cui, Zhibing,Liu, Jianguo,Liu, Qiying,Ma, Longlong,Singh, Thishana,Wang, Chenguang,Wang, Nan,Zhu, Yuting

supporting information, p. 7387 - 7397 (2020/11/19)

The primary objective of many researchers in chemical synthesis is the development of recyclable and easily accessible catalysts. These catalysts should preferably be made from Earth-abundant metals and have the ability to be utilised in the synthesis of pharmaceutically important compounds. Amines are classified as privileged compounds, and are used extensively in the fine and bulk chemical industries, as well as in pharmaceutical and materials research. In many laboratories and in industry, transition metal catalysed reductive amination of carbonyl compounds is performed using predominantly ammonia and H2. However, these reactions usually require precious metal-based catalysts or RANEY nickel, and require harsh reaction conditions and yield low selectivity for the desired products. Herein, we describe a simple and environmentally friendly method for the preparation of thin graphene spheres that encapsulate uniform Ni/NiO nanoalloy catalysts (Ni/NiO?C) using nickel citrate as the precursor. The resulting catalysts are stable and reusable and were successfully used for the synthesis of primary, secondary, tertiary, and N-methylamines (more than 62 examples). The reaction couples easily accessible carbonyl compounds (aldehydes and ketones) with ammonia, amines, and H2 under very mild industrially viable and scalable conditions (80 °C and 1 MPa H2 pressure, 4 h), offering cost-effective access to numerous functionalized, structurally diverse linear and branched benzylic, heterocyclic, and aliphatic amines including drugs and steroid derivatives. We have also demonstrated the scale-up of the heterogeneous amination protocol to gram-scale synthesis. Furthermore, the catalyst can be immobilized on a magnetic stirring bar and be conveniently recycled up to five times without any significant loss of catalytic activity and selectivity for the product.

Preparation of a magnetic mesoporous Fe3O4-Pd@TiO2 photocatalyst for the efficient selective reduction of aromatic cyanides

Zhao, Ziming,Long, Yu,Luo, Sha,Wu, Wei,Ma, Jiantai

, p. 6294 - 6302 (2019/04/25)

Herein, a hierarchical magnetic mesoporous microsphere was successfully prepared as a photocatalyst via a simple and reproducible route. Typically, Pd nanoparticles (NPs) were evenly dispersed on the surface of a magnetic Fe3O4 microsphere and then coated with a porous anatase-TiO2 shell to form Fe3O4-Pd@TiO2. The core-shell structure could efficiently suppress the conglomeration of Pd NPs during the calcination process at high temperatures as well as the shedding of Pd during the catalytic reaction process in the liquid phase. The as-prepared photocatalyst was characterized by TEM, XRD, XPS, VSM, and N2 adsorption-desorption. Fe3O4-Pd@TiO2 exhibits high photocatalytic activity for the selective reduction of aromatic cyanides to aromatic primary amines in an acidic aqueous solution. Moreover, this magnetic photocatalyst could be easily recovered from the reaction mixture by an external magnet and reused five times without significant reduction in its activity. The superior photocatalytic efficiency of the proposed photocatalyst may be attributed to its high charge separation efficiency and charge transfer rate, which are caused by the Schottky junction and large interface area. The results indicate that the strategy of coating the active noble metal sites with a mesoporous semiconductor shell has a significant potential for application in metal-semiconductor-based photocatalytic reactions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 34967-24-3