Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4254-67-5

Post Buying Request

4254-67-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4254-67-5 Usage

Preparation

Obtained by reaction of bromine with 4-benzyloxyacetophenone in methanol in the presence of concentrated hydrochloric acid at 0–5° for 1 h, then at r.t. for another 1 h (90%).

Check Digit Verification of cas no

The CAS Registry Mumber 4254-67-5 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,2,5 and 4 respectively; the second part has 2 digits, 6 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 4254-67:
(6*4)+(5*2)+(4*5)+(3*4)+(2*6)+(1*7)=85
85 % 10 = 5
So 4254-67-5 is a valid CAS Registry Number.
InChI:InChI=1/C15H13BrO2/c16-10-15(17)13-6-8-14(9-7-13)18-11-12-4-2-1-3-5-12/h1-9H,10-11H2

4254-67-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-(4-(Benzyloxy)phenyl)-2-bromoethanone

1.2 Other means of identification

Product number -
Other names 2-bromo-1-(4-phenylmethoxyphenyl)ethanone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4254-67-5 SDS

4254-67-5Relevant articles and documents

-

Reznikov,V.M.,Novitskii,V.F.

, (1975)

-

Stereoselective Formation of β-O-4 Structures Mimicking Softwood Lignin Biosynthesis: Effects of Solvent and the Structures of Quinone Methide Lignin Models

Zhu, Xuhai,Akiyama, Takuya,Yokoyama, Tomoya,Matsumoto, Yuji

, (2019)

p-Quinone methide (QM) is formed as an intermediate during lignin biosynthesis. The aromatization of the QM by the attack of a nucleophile at the α-position of its side chain generates a phenolic hydroxy group in a growing polymer and creates stereoisomeric forms in the side chain. A series of β-O-4-aryl ether QMs was reacted with water at 25 °C to replicate the formation of p-hydroxyphenyl (H) and guaiacyl (G) β-O-4 structures in plant cell walls. Water addition occurred in 3-methoxy-substituted QMs (G-type QMs) with half-lives (t1/2) between 13 and 15 min, at pH 7, in 50% water solution (dioxane-water, 1:1). The rate increased as the water concentration increased to 99% (t1/2, 1.2-1.4 min). Similar solvent effects were observed for more reactive nonsubstituted QMs (H-type QMs with t1/2 of 1/2 of the H-type QMs was shorter than that of the G-type QMs under every solvent condition. Upon increasing the water concentration, the variation in the erythro/threo ratios of the four dimeric β-O-4 products increased. Interestingly, the effect of pH on the stereopreference, which was observed in 50% water solution, was small and became imperceptible as the water concentration increased to 99%, suggesting that the effect of the solvent, as well as the effect of the pH, plays an important role in understanding the reaction conditions in cell walls during lignin biosynthesis. The threo isomer was preferentially formed in the four dimeric β-O-4 structures, which is inconsistent with the structural features of compression wood lignin rich in H-units. However, the erythro-selective formation was attained in an H-type QM at every pH studied (pH 3.5-7) by introducing a biphenyl structure into the β-etherified ring moiety.

Benzoic acid resin (BAR): a heterogeneous redox organocatalyst for continuous flow synthesis of benzoquinones from β-O-4 lignin models

Dias, Kevin de Aquino,Pereira Junior, Marcus Vinicius Pinto,Andrade, Leandro Helgueira

supporting information, p. 2308 - 2316 (2021/04/07)

A polymer-bound organocatalyst for Baeyer-Villiger reaction and phenol oxidation under continuous flow conditions is described for the first time.BARhas revealed two catalytic activities that enabled the generation of a novel approach for the synthesis of benzoquinones from β-O-4 lignin models in a one-pot protocol. High catalytic activities (yields up to 98%), selectivities, recyclability and productivity were achieved.

Pd-Catalyzed Decarboxylative Olefination: Stereoselective Synthesis of Polysubstituted Butadienes and Macrocyclic P-glycoprotein Inhibitors

Chen, Xiangyang,Hao, Jiping,Houk, K. N.,Li, Yingzi,Lou, Liguang,Quan, Haitian,Song, Bichao,Wang, Lu,Xia, Yuanzhi,Xie, Peipei,Xu, Zhongliang,Yang, Weibo

supporting information, p. 9982 - 9992 (2020/06/27)

The efficient and stereoselective synthesis of polysubstituted butadienes, especially the multifunctional butadienes, represents a great challenge in organic synthesis. Herein, we wish to report a distinctive Pd(0) carbene-initiated decarboxylative olefination approach that enables the direct coupling of diazo esters with vinylethylene carbonates (VECs), vinyl oxazolidinones, or vinyl benzoxazinones to afford alcohol-, amine-, or aniline-containing 1,3-dienes in moderate to high yields and with excellent stereoselectivity. This protocol features operational simplicity, mild reaction conditions, a broad substrate scope, and gram-scalability. Notably, a structurally unique allylic Pd(II) intermediate was isolated and characterized. DFT calculation and control experiments demonstrated that a rare Pd(0) carbene intermediate could be involved in this reaction. Moreover, the polysubstituted butadienes as novel building blocks were unprecedentedly assembled into macrocycles, which efficiently inhibited the P-glycoprotein and dramatically reversed multidrug resistance in cancer cells by 190-fold.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4254-67-5