Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7478-60-6

Post Buying Request

7478-60-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7478-60-6 Usage

Uses

7-Methoxyflavonol (cas# 7478-60-6) is a flavenoid which, as a class of compounds, have broad pharmacological activity, including binding to biomolecules such as enzymes, hormone carriers, and DNA, chelating transition metal ions, catalyzing electron transport, and scavenging free radicals.

Check Digit Verification of cas no

The CAS Registry Mumber 7478-60-6 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,4,7 and 8 respectively; the second part has 2 digits, 6 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 7478-60:
(6*7)+(5*4)+(4*7)+(3*8)+(2*6)+(1*0)=126
126 % 10 = 6
So 7478-60-6 is a valid CAS Registry Number.
InChI:InChI=1/C16H12O4/c1-19-11-7-8-12-13(9-11)20-16(15(18)14(12)17)10-5-3-2-4-6-10/h2-9,18H,1H3

7478-60-6 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Aldrich

  • (H5405)  3-Hydroxy-7-methoxyflavone  

  • 7478-60-6

  • H5405-250MG

  • 1,813.50CNY

  • Detail

7478-60-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-hydroxy-7-methoxy-2-phenylchromen-4-one

1.2 Other means of identification

Product number -
Other names 7-methoxyflavanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7478-60-6 SDS

7478-60-6Relevant articles and documents

Synthesis of Flavonols via Pyrrolidine Catalysis: Origins of the Selectivity for Flavonol versus Aurone

Xiong, Wei,Wang, Xiaohong,Shen, Xianyan,Hu, Cuifang,Wang, Xin,Wang, Fei,Zhang, Guolin,Wang, Chun

supporting information, p. 13160 - 13176 (2020/11/23)

A novel synthetic method for flavonol from 2′-hydroxyl acetophenone and benzaldehyde promoted by pyrrolidine under an aerobic condition in water is established. This protocol was supported by efficient synthesis of 44 common examples and three natural products. The α, β-unsaturated iminium ion (enimine ion E) was proved to be the key intermediate in the reaction. H218O and 18O2 isotope tracking experiments demonstrated that both water and the aerobic atmosphere were necessary to ensure the transformation. The selectivity for flavonol or aurone was originated from solvent-triggered intermediates, which were determined by UV-visible spectra from isolated enimine. The phenol-iminium E-A is dominant in water and the ketoenamine intermediate E-B is prevalent in acetonitrile. In the presence of pyrrolidine and oxygen, E-A leads to flavonol through E-I, a zwitterionic-like phenoloxyl-iminium ion, following the key steps of cyclization and a [2 + 2] oxidation; E-B proceeds through path II, a radical process induced by photolysis of E-B with both pyrrolidine and oxygen, to afford aurone. Preliminary mechanistic studies are reported.

Discovery of a Prenylated Flavonol Derivative as a Pin1 Inhibitor to Suppress Hepatocellular Carcinoma by Modulating MicroRNA Biogenesis

Zheng, Yuanyuan,Pu, Wenchen,Li, Jiao,Shen, Xianyan,Zhou, Qiang,Fan, Xin,Yang, Sheng-Yong,Yu, Yamei,Chen, Qiang,Wang, Chun,Wu, Xin,Peng, Yong

supporting information, p. 130 - 134 (2018/11/30)

Peptidyl-prolyl cis-trans isomerase Pin1 plays a crucial role in the development of human cancers. Recently, we have disclosed that Pin1 regulates the biogenesis of miRNA, which is aberrantly expressed in HCC and promotes HCC progression, indicating the therapeutic role of Pin1 in HCC therapy. Here, 7-(benzyloxy)-3,5-dihydroxy-2-(4-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-4H-chromen-4-one (AF-39) was identified as a novel Pin1 inhibitor. Biochemical tests indicate that AF-39 potently inhibits Pin1 activity with an IC50 values of 1.008 μm, and also displays high selectivity for Pin1 among peptidyl prolyl isomerases. Furthermore, AF-39 significantly suppresses cell proliferation of HCC cells in a dose- and time-dependent manner. Mechanistically, AF-39 regulates the subcellular distribution of XPO5 and increases miRNAs biogenesis in HCC cells. This work provides a promising lead compound for HCC treatment, highlighting the therapeutic potential of miRNA-based therapy against human cancer.

Origin of Spectral Features and Acid-Base Properties of 3,7-Dihydroxyflavone and Its Monofunctional Derivatives in the Ground and Excited States

Serdiuk, Illia E.,Roshal, Alexander D.,B?azejowski, Jerzy

, p. 4325 - 4337 (2016/07/11)

Comprehensive spectral investigations of 3,7-dihydroxyflavone and its two derivatives, which each contain a methyl-blocked hydroxyl group, reveal complex radiation absorption in the 300-450 nm range and emission in the 370-650 nm range. The absorption and fluorescence characteristics of these compounds depend on the pH/H0 of the water/methanol media, which is caused by the existence of the compounds in various protolytic (cationic, neutral, anionic) and tautomeric forms. Combined analysis of steady-state, time-dependent and fluorescence decay spectral data enabled the identification of the emitting species, determination of their lifetimes with respect to radiative and nonradiative deactivation processes, fluorescence quantum yields, protolytic and tautomeric abilities under various conditions, and acidic dissociation constants of the cationic, neutral, and anionic forms of the compounds. Results of calculations carried out at the DFT and TD DFT levels of theory generally confirmed the experimental findings concerning tautomeric/protolytic transformations and equilibria. Computational methods also provided insight into possible tautomerization pathways. Electronically excited molecules are generally much more susceptible to tautomerization and acidic dissociation than ground-state ones. 3,7-Dihydroxyflavone exhibits distinguishable features among the compounds investigated and can be considered as potential spectral indicator of properties (polarity, hydrophobicity, hydrogen-bonding ability) and acidity/basicity of liquid environments.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7478-60-6
  • ©2008 LookChem.com,License:ICP NO.:Zhejiang16009103 complaints:service@lookchem.com
  • [Hangzhou]86-571-87562588,87562561,87562573 Our Legal adviser: Lawyer