Welcome to LookChem.com Sign In|Join Free

CAS

  • or

99528-63-9

Post Buying Request

99528-63-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

99528-63-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 99528-63-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 9,9,5,2 and 8 respectively; the second part has 2 digits, 6 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 99528-63:
(7*9)+(6*9)+(5*5)+(4*2)+(3*8)+(2*6)+(1*3)=189
189 % 10 = 9
So 99528-63-9 is a valid CAS Registry Number.

99528-63-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Oxiranemethanol, 3-phenyl-, (2S,3R)-

1.2 Other means of identification

Product number -
Other names Oxiranemethanol, 3-phenyl-, (2S,3R)-

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:99528-63-9 SDS

99528-63-9Relevant articles and documents

Enantiocomplementary Epoxidation Reactions Catalyzed by an Engineered Cofactor-Independent Non-natural Peroxygenase

Crotti, Michele,Kataja, Kim M.,Poelarends, Gerrit J.,Saravanan, Thangavelu,Xu, Guangcai

, p. 10374 - 10378 (2020/04/23)

Peroxygenases are heme-dependent enzymes that use peroxide-borne oxygen to catalyze a wide range of oxyfunctionalization reactions. Herein, we report the engineering of an unusual cofactor-independent peroxygenase based on a promiscuous tautomerase that accepts different hydroperoxides (t-BuOOH and H2O2) to accomplish enantiocomplementary epoxidations of various α,β-unsaturated aldehydes (citral and substituted cinnamaldehydes), providing access to both enantiomers of the corresponding α,β-epoxy-aldehydes. High conversions (up to 98 %), high enantioselectivity (up to 98 % ee), and good product yields (50–80 %) were achieved. The reactions likely proceed via a reactive enzyme-bound iminium ion intermediate, allowing tweaking of the enzyme's activity and selectivity by protein engineering. Our results underscore the potential of catalytic promiscuity for the engineering of new cofactor-independent oxidative enzymes.

Borylation and rearrangement of alkynyloxiranes: A stereospecific route to substituted α-enynes

Fuentespina, Ruben Pomar,De La Cruz, José Angel Garcia,Durin, Gabriel,Mamane, Victor,Weibel, Jean-Marc,Pale, Patrick

supporting information, p. 1416 - 1424 (2019/07/10)

1,3-Enynes are important building blocks in organic synthesis and also constitute the key motif in various bioactive natural products and functional materials. However, synthetic approaches to stereodefined substituted 1,3-enynes remain a challenge, as they are limited to Wittig and cross-coupling reactions. Herein, stereodefined 1,3-enynes, including tetrasubstituted ones, were straightforwardly synthesized from cis or trans-alkynylated oxiranes in good to excellent yields by a one-pot cascade process. The procedure relies on oxirane deprotonation, borylation and a stereospecific rearrangement of the so-formed alkynyloxiranyl borates. This stereospecific process overall transfers the cis or trans-stereochemistry of the starting alkynyloxiranes to the resulting 1,3-enynes.

Efficient and selective oxidation of alcohols to carbonyl compounds at room temperature by a ruthenium complex catalyst and hydrogen peroxide

Wang, Jie-Xiang,Zhou, Xian-Tai,Han, Qi,Guo, Xiao-Xuan,Liu, Xiao-Hui,Xue, Can,Ji, Hong-Bing

, p. 19415 - 19421 (2019/12/24)

In this study, convenient and selective oxidation of alcohols using aqueous hydrogen peroxide to yield carbonyl compounds was studied. Using the ruthenium-(4-methylphenyl-2,6-bispydinyl) pyridinedicarboxylate complex [Ru(mpbp)(pydic)] as a catalyst, primary and secondary alcohols were oxidized to aldehydes and ketones at room temperature with a satisfactory yield and excellent selectivity. The influence of various reaction parameters, such as solvent, catalyst and oxidant amount on both the activity and selectivity was also evaluated. Kinetic studies showed that the oxidation of alcohol was first order in terms of the substrate and hydrogen peroxide, and was second order in terms of the catalyst. A plausible mechanism involving ruthenium-oxo species with electrophilic character was proposed based on the in situ UV-vis spectroscopy studies and Hammett plots.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 99528-63-9