Welcome to LookChem.com Sign In|Join Free

CAS

  • or

614-96-0

Post Buying Request

614-96-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

614-96-0 Usage

Chemical Properties

white to slightly beige crystalline solid

Uses

Different sources of media describe the Uses of 614-96-0 differently. You can refer to the following data:
1. 5-Methylindole is used in the synthesis of novel protein kinase inhibitors.
2. 5-Methylindole is used as reactant for preparation of pharmaceutically active 2-oxo-1-pyrrolidine analogues, potential anticancer immunomodulators, IL2-inducible T-cell kinase (ITK) inhibitors and CRTh2 antagonists.

General Description

The binding of 5-methylindole (inducer) to the Escherichia coli trp repressor has been studied. The mass analyzed threshold ionization spectra of jetcooled 5-methylindole (5MI) has also been studied.

Check Digit Verification of cas no

The CAS Registry Mumber 614-96-0 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,1 and 4 respectively; the second part has 2 digits, 9 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 614-96:
(5*6)+(4*1)+(3*4)+(2*9)+(1*6)=70
70 % 10 = 0
So 614-96-0 is a valid CAS Registry Number.
InChI:InChI=1/C9H9N/c1-7-2-3-9-8(6-7)4-5-10-9/h2-6,10H,1H3

614-96-0 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (L06893)  5-Methylindole, 99%   

  • 614-96-0

  • 1g

  • 600.0CNY

  • Detail
  • Alfa Aesar

  • (L06893)  5-Methylindole, 99%   

  • 614-96-0

  • 5g

  • 2665.0CNY

  • Detail
  • Aldrich

  • (222410)  5-Methylindole  99%

  • 614-96-0

  • 222410-1G

  • 861.12CNY

  • Detail

614-96-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name 5-Methylindole

1.2 Other means of identification

Product number -
Other names 6-methylindole

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:614-96-0 SDS

614-96-0Relevant articles and documents

Metal–Organic Layers Hierarchically Integrate Three Synergistic Active Sites for Tandem Catalysis

Quan, Yangjian,Lan, Guangxu,Shi, Wenjie,Xu, Ziwan,Fan, Yingjie,You, Eric,Jiang, Xiaomin,Wang, Cheng,Lin, Wenbin

supporting information, p. 3115 - 3120 (2020/12/09)

We report the design of a bifunctional metal–organic layer (MOL), Hf12-Ru-Co, composed of [Ru(DBB)(bpy)2]2+ [DBB-Ru, DBB=4,4′-di(4-benzoato)-2,2′-bipyridine; bpy=2,2′-bipyridine] connecting ligand as a photosensitizer and Co(dmgH)2(PPA)Cl (PPA-Co, dmgH=dimethylglyoxime; PPA=4-pyridinepropionic acid) on the Hf12 secondary building unit (SBU) as a hydrogen-transfer catalyst. Hf12-Ru-Co efficiently catalyzed acceptorless dehydrogenation of indolines and tetrahydroquinolines to afford indoles and quinolones. We extended this strategy to prepare Hf12-Ru-Co-OTf MOL with a [Ru(DBB)(bpy)2]2+ photosensitizer and Hf12 SBU capped with triflate as strong Lewis acids and PPA-Co as a hydrogen transfer catalyst. With three synergistic active sites, Hf12-Ru-Co-OTf competently catalyzed dehydrogenative tandem transformations of indolines with alkenes or aldehydes to afford 3-alkylindoles and bisindolylmethanes with turnover numbers of up to 500 and 460, respectively, illustrating the potential use of MOLs in constructing novel multifunctional heterogeneous catalysts.

Highly Ordered Mesoporous Cobalt Oxide as Heterogeneous Catalyst for Aerobic Oxidative Aromatization of N-Heterocycles

Cao, Yue,Wu, Yong,Zhang, Yuanteng,Zhou, Jing,Xiao, Wei,Gu, Dong

, p. 3679 - 3686 (2021/06/18)

N-heterocycles are key structures for many pharmaceutical intermediates. The synthesis of such units normally is conducted under homogeneous catalytic conditions. Among all methods, aerobic oxidative aromatization is one of the most effective. However, in homogeneous conditions, catalysts are difficult to be recycled. Herein, we report a heterogeneous catalytic strategy with a mesoporous cobalt oxide as catalyst. The developed protocol shows a broad applicability for the synthesis of N-heterocycles (32 examples, up to 99 % yield), and the catalyst presents high turnover numbers (7.41) in the absence of any additives. Such a heterogenous approach can be easily scaled up. Furthermore, the catalyst can be recycled by simply filtration and be reused for at least six times without obvious deactivation. Comparative studies reveal that the high surface area of mesoporous cobalt oxide plays an important role on the catalytic reactivity. The outstanding recycling capacity makes the catalyst industrially practical and sustainable for the synthesis of diverse N-heterocycles.

Iron-Catalyzed ?±,?-Dehydrogenation of Carbonyl Compounds

Zhang, Xiao-Wei,Jiang, Guo-Qing,Lei, Shu-Hui,Shan, Xiang-Huan,Qu, Jian-Ping,Kang, Yan-Biao

supporting information, p. 1611 - 1615 (2021/03/03)

An iron-catalyzed α,β-dehydrogenation of carbonyl compounds was developed. A broad spectrum of carbonyls or analogues, such as aldehyde, ketone, lactone, lactam, amine, and alcohol, could be converted to their α,β-unsaturated counterparts in a simple one-step reaction with high yields.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 614-96-0