Welcome to LookChem.com Sign In|Join Free

CAS

  • or

42116-44-9

Post Buying Request

42116-44-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

42116-44-9 Usage

General Description

The chemical "Carbamic acid, (phenylmethyl)-, 1,1-dimethylethyl ester (9CI)" is an organic compound with the molecular formula C11H17NO2. It is commonly known as benzyl carbamate or benzyl formate. This chemical is used in the manufacturing of pharmaceuticals, pesticides, and as a solvent in various industrial processes. It is also used as a reagent in organic synthesis and as an intermediate in the production of other chemicals. Benzyl carbamate is a colorless, flammable liquid with a slightly fruity odor and is considered to be a potential irritant to the skin and eyes.

Check Digit Verification of cas no

The CAS Registry Mumber 42116-44-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 4,2,1,1 and 6 respectively; the second part has 2 digits, 4 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 42116-44:
(7*4)+(6*2)+(5*1)+(4*1)+(3*6)+(2*4)+(1*4)=79
79 % 10 = 9
So 42116-44-9 is a valid CAS Registry Number.

42116-44-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name tert-butyl N-benzylcarbamate

1.2 Other means of identification

Product number -
Other names tert-butyl benzylcarbamate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:42116-44-9 SDS

42116-44-9Relevant articles and documents

Nickel Boride Catalyzed Reductions of Nitro Compounds and Azides: Nanocellulose-Supported Catalysts in Tandem Reactions

Proietti, Giampiero,Prathap, Kaniraj Jeya,Ye, Xinchen,Olsson, Richard T.,Dinér, Peter

supporting information, p. 133 - 146 (2021/11/04)

Nickel boride catalyst prepared in situ from NiCl2 and sodium borohydride allowed, in the presence of an aqueous solution of TEMPO-oxidized nanocellulose (0.01 wt%), the reduction of a wide range of nitroarenes and aliphatic nitro compounds. Here we describe how the modified nanocellulose has a stabilizing effect on the catalyst that enables low loading of the nickel salt pre-catalyst. Ni-B prepared in situ from a methanolic solution was also used to develop a greener and facile reduction of organic azides, offering a substantially lowered catalyst loading with respect to reported methods in the literature. Both aromatic and aliphatic azides were reduced, and the protocol is compatible with a one-pot Boc-protection of the obtained amine yielding the corresponding carbamates. Finally, bacterial crystalline nanocellulose was chosen as a support for the Ni-B catalyst to allow an easy recovery step of the catalyst and its recyclability for new reduction cycles.

Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of α-Nitrotoluenes to E-Nitroethenes

Chong, Xiaodan,Liu, Cuibo,Wang, Changhong,Yang, Rong,Zhang, Bin

, p. 22010 - 22016 (2021/09/02)

Developing an electrochemical carbon-added reaction with accelerated kinetics to replace the low-value and sluggish oxygen evolution reaction (OER) is markedly significant to pure hydrogen production. Regulating the critical steps to precisely design electrode materials to selectively synthesize targeted compounds is highly desirable. Here, inspired by the surfaced adsorbed SeOx2? promoting OER, NiSe is demonstrated to be an efficient anode enabling α-nitrotoluene electrooxidation to E-nitroethene with up to 99 % E selectivity, 89 % Faradaic efficiency, and the reaction rate of 0.25 mmol cm?2 h?1 via inhibiting side reactions for energy-saving hydrogen generation. The high performance can be associated with its in situ formed NiOOH surface layer and absorbed SeOx2? via Se leaching-oxidation during electrooxidation, and the preferential adsorption of two -NO2 groups of intermediate on NiOOH. A self-coupling of α-carbon radicals and subsequent elimination of a nitrite molecule pathway is proposed. Wide substrate scope, scale-up synthesis of E-nitroethene, and paired productions of E-nitroethene and hydrogen or N-protected aminoarenes over a bifunctional NiSe electrode highlight the promising potential. Gold also displays a similar promoting effect for α-nitrotoluene transformation like SeOx2?, rationalizing the strategy of designing materials to suppress side reactions.

Nanoceria as an efficient and green catalyst for the chemoselective N-tert-butyloxycarbonylation of amines under the solvent-free conditions

Garad, Dnyaneshwar N.,Ingale, Ajit P.,Shinde, Sandeep V.,Ukale, Dattatraya

supporting information, p. 1656 - 1668 (2021/04/05)

Nanocerium oxide mediated an efficient and green protocol has been described for the chemoselective N-tert-butyloxycarbonylation of amines under the solvent-free conditions at ambient temperature. Various aliphatic, aromatic and heteroaromatic amines were protected using developed protocol and several functional groups such as alcohol, phenol and ester were well tolerated under these conditions. The rapid reaction rate, mild conditions, very good functional group tolerance, excellent yield, solvent-free, easy recovery products and excellent catalyst recyclability are the advantages of this protocol. This makes the protocol feasible, economical and environmentally benign.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 42116-44-9