The modification of pillared MFI zeolites was performed by nitridation of silica pillared MFI zeolite nanosheets under NH3 atmosphere with different time. The resultant zeolites were characterized by a complementary combination of X-ray power diffraction (XRD), scanning electron microscopy (SEM)...
The catalytic transalkylation chemistry encountered with mesitylene interacting with benzene has been revealed working with the acid zeolites, H-mordenite and HY. Preferential adsorption on the active site of the alkyl group containing-aromatic molecule was very advantageous for transalkylation ...
The current work reports the extraction of 1-butanol from aqueous streams using low density solvents namely, mesitylene (ρ = 0.864 g/cm3) and oleyl alcohol (ρ = 0.849 g/cm3). The ternary Liquid-Liquid Equilibrium (LLE) studies for mesitylene (1) + 1-butanol (2) + water (3) and oleyl alcohol (1...
Mesitylene, a representative heavy carbon by-product in the course of C1 chemical downstream processes, is proposed to be employed in this study, as the initial material to synthesize the porous carbons that have played a crucial part in the adsorptive carbon capture process but are generally ma...
Organic aromatic cold neutron moderators - like mesitylene (C9H12) - are often much more convenient to handle and to commission than cryogenic methane or ortho/para hydrogen moderators. Although this benefit comes at the cost of reduced brilliance, mesitylene moderators are suited to enable cold...
The Candida antarctica lipase B catalyzed kinetic resolution of (R/S)-1-methoxy-2-propyl-acetate was studied as a model system for the biocatalytic production of chiral secondary alcohols. For this purpose, a kinetic model is proposed involving both enantiomers of this reaction using model discr...
Diffuse agricultural pollution is widely recognized as a significant threat to the quality of water resources. Metaldehyde is a soluble synthetic aldehyde pesticide used globally in agriculture which has caused recent concern due to high observed levels (exceeding the European and UK standards f...
In the agriculture intensive eastern region of England, plant protection products are widely applied to protect crops such as wheat and oilseed rape from pests and diseases, thus creating a risk of reaching nearby water courses through surface runoff. The EU Drinking Water Directive sets a strin...
Metaldehyde is a potent molluscicide. It is the active ingredient in most slug pellets used for crop protection. This polar compound is considered an emerging pollutant. Due to its environmental mobility, metaldehyde is frequently detected at impacted riverine sites, often at concentrations abov...
Metaldehyde (MA) is an organic compound widely used in agriculture all around the world as molluscicide. There are growing concerns that relatively high levels of MA have been detected in surface water, which could be ascribed to the fact that it is transparent to common wastewater treatment pro...
Polar, low molecular weight pesticides such as metaldehyde are challenging and costly to remove from drinking water using conventional treatment methods. Although biological treatments can be effective at treating micropollutants, through biodegradation and sorption processes, only some operatio...
A photodegradation technology based on the combination of ultraviolet radiation with H2O2 (UV/H2O2) for degrading tri(chloroisopropyl) phosphate (TCPP) was developed. In ultrapure water, a pseudo-first order reaction was observed, and the degradation rate constant reached 0.0035 min−1 (R2 = 0.98...
The Taylor–Aris chromatographic technique was employed for the determination of diffusion coefficients of 2-fluoroanisole, 2-bromoanisole, allylbenzene and 1,3-divinylbenzene at infinite dilution in supercritical carbon dioxide from 313.16 to 333.16 K and pressures between 15 and 35 MPa. As exp...
Hyperbranched polymers were synthesized using anionic self-condensing vinyl polymerization (ASCVP) by forming ‘inimer’ (initiator within a monomer) in situ from divinylbenzene (DVB) and 1,3-diisopropenylbenzene (DIPB) using anionic initiators in THF at −40 °C. The reaction of equimolar amount...
The reaction between glutaric anhydride (1) and N-benzylidenebenzylamine (3) was studied in detail by 1H NMR spectroscopy under different reaction conditions. The major product was (±)-trans-1-benzyl-6-oxo-2-phenylpiperidine-3-carboxylic acid (2), which was converted into new substituted piperi...
Investigation of electrode/electrolyte interface of 5V spinel material LiNi0.4Mn1.6O4 was carried out in the presence of glutaric anhydride additive, using combined magic angle spinning NMR spectroscopy and electron energy-loss spectroscopy. After exposure to LiPF6 in EC/DMC liquid electrolyte, ...
In this study, the preparation and characterization of biobased thermosets comprising epoxidized linseed oil (ELO), adipic acid and/or glutaric anhydride, initiated by N,N-4-dimethylaminopyridine (DMAP) is reported. By changing the ratio of adipic acid to glutaric anhydride, the obtained resins ...
Since Fe3O4 nanoparticles synthesized by plant extracts possess good bio-compatibility and superparamagnetic properties, the possibility of these could be used as a carrier in drug delivery. In this work, doxorubicin hydrochloride (DOX), an anti-cancer drug, loaded on glutaric anhydride-function...
For favored and rare prototropic tautomers of isocytosine (iC), geometric consequences of ionization, one-electron loss (iC − e → iC+) and one-electron gain (iC + e → iC−), have been studied. Effects of protonation and deprotonation on geometry of neutral isocytosine (iC + H+ → iCH+ and iC − ...
Quantum-chemical calculations have been performed for twenty-one favored and rare isomers of neutral isocytosine in two extreme media, in the gas phase {B3LYP/6-311+G(d,p)} and in aqueous solution {PCM(water)//B3LYP/6-311+G(d,p)}. In aqueous solution, the most aromatic hydroxy-amino form, favore...
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View