This study investigated the effects of floor space and betaine supplementation on the nutrient digestibility and performance of laying quail, at an advanced stage of production, in a tropical environment. In total, 408 laying quail (23 weeks old) were distributed in 3 × 2 factorial arrangements...
We report the LC-ESI-MS/MS determination of betaines in commercial flours of cereals and pseudocereals most utilized in human nutrition. Results showed that glycine betaine, trigonelline, proline betaine, Nε-trimethyllysine were metabolites common to all examined flours, whereas an uncommon bet...
BackgroundMaternal phosphatidylcholine supplements have shown benefit in the development of the human fetal brain, as assessed both by newborn physiological measurements and by a related decrease in later childhood behavioral abnormalities. However, the relatively low choline component of phosph...
Recombinase polymerase amplification (RPA) is a widespread isothermal amplification method and regarded as an excellent candidate to replace polymerase chain reaction. However, the specificity of RPA is not always satisfactory when the sample contains amounts of background DNA. Herein, we report...
To determine the nature of interaction of ethylene glycol (EG), propylene glycol (PG), and hexylene glycol (HG) in the methanol solutions of methylparaben, density and speed of the sound of ethylene glycol, propylene glycol, and hexylene glycol in methylparaben–methanol (MePB–MeOH) solutions w...
The kinetics of H abstraction and addition reactions of 2,4,4-trimethyl-2-pentene by OH were determined by traditional and canonical variational transition state theory, with potential energy surfaces calculated at DLPNO-CCSD(T)/cc-pvtz//BHANDHLYP/6-311G(d, p) and CCSD(T)/6-311++G(d, p)//BHANDHL...
The rate coefficients of H abstraction and OH addition reactions of 2,4,4-trimethyl-1-pentene with OH were determined by both canonical variational transition state theory and conventional transition state theory. The potential energy surfaces were calculated at CCSD(T)/6-311++G(d, p)//BHANDHLYP...
Experiments of ignition delay times on 2,4,4-trimethyl-1-pentene were performed behind reflected shock waves at pressure ranging from 2 atm to 10 atm, at equivalence ratios from 0.5 to 2.0, and with fuel concentrations of 0.5%, 0.75% and 1%. All ignition delay times follow the Arrhenius rule, an...
Excess enthalpy (HE) for the binary system of (methanol + 2,4,4-trimethyl-1-pentene) (TMP-1) is reported at T = 298.15 K and 101 kPa. (Liquid + liquid) equilibrium (LLE) for the same system is measured at atmospheric pressure (101 kPa). LLE for ternary system of (water + methanol + 2,4,4-trimeth...
The laminar flame speeds for 2,4,4-trimethyl-1-pentene/air mixtures have been measured in a constant volume combustion bomb, at initial temperatures of 400 and 450 K, initial pressures of 0.1 and 0.3 MPa, and equivalence ratios from 0.6 to 1.5. Both the linear and nonlinear models are used for e...
SummaryMethionic and 1,2-ethanedisulfonic acids, analogs of malonic and succinic acids, respectively, inhibit the oxidation of succinate. Arsonoacetic and β-phosphonopropionic acids, however, exert no inhibitory action. Other analogs containing rings which fix the spatial orientation of the car...
We report the synthesis and characterization of the arsonic acid-presenting superparamagnetic iron oxide (SPIO). We used arsonoacetic acid as the ligand for SPIOs in aqueous media. The surface modification of the SPIOs was accomplished via the ligand exchange from undecanoic acid to the carboxyl...
We report the tumor cell-selective prodrugs based on the arsonic acid-presenting iron oxide nanoparticles. We synthesized the well-dispersed nanoparticles having arsonoacetic acid which is composed of the low toxic As(V) form. From the analyses of the reaction products, it is suggested that the ...
Detailed spectroscopic data have been obtained for arsonoacetic acid, As(CH2COOH)O3H2, and its barium and sodium salts. The X-ray crystal structure of the free acid is isomorphous with phosphonoacetic acid. Reduction gave the As(I) compound arsenoacetic acid, (AsCH2COOH)n which was shown by ESI-...
Performic acid (PFA) is an oxidant used in chemical processing, synthesis and bleaching. The macro kinetic models of synthesis, hydrolysis and decomposition of PFA were investigated via formic acid-autocatalyzed reaction. It was found that the intrinsic activation energies of PFA synthesis and h...
We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-s...
The continuous production of performic acid is getting significant importance due to it’s versatile oxidizing properties in various applications such as in the food, oil and chemical industries. In this work, an attempt has been made for synthesis of performic acid in a continuous flow microrea...
Combined sewer overflows contribute significantly to pathogen loads in surface water. Some chemical disinfectants such as chlorine have proved to reduce the levels of microorganisms even in complex matrices such as wastewater in combined sewer systems; however, some of them release toxic by-prod...
The ecotoxicological evaluation of combined sewer overflow (CSO) disinfectants, with their degradation products, is important for ensuring safe use. For this form of toxicity, data for organisms representing different trophic levels are needed. We studied the toxicity of the alternative disinfec...
The effect of sodium selenite on the activity of the selected enzymes in blood serum and on mercury concentration in some tissues of guinea pigs exposed to ethyl- (EtHg) or phenylmercuric chloride (PhHg) was investigated. Every second day for a 3-month period animals were given intragastrically ...
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View